Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.08.23295250

ABSTRACT

Omicron BA.2.86 subvariant differs from Omicron BA.2 as well as recently circulating variants by over 30 mutations in the spike protein alone. Here we report on the first isolation of the live BA.2.86 subvariant from a diagnostic swab collected in South Africa which we tested for escape from neutralizing antibodies and viral replication properties in cell culture. BA.2.86 did not have significantly more escape than Omicron XBB.1.5 from neutralizing immunity elicited by infection of Omicron subvariants ranging from BA.1 to XBB, either by infection alone or as breakthrough infection in vaccinated individuals. Neutralization escape was present relative to earlier strains: BA.2.86 showed extensive escape both relative to ancestral virus in sera from pre-Omicron vaccinated individuals and relative to Omicron BA.1 in sera from Omicron BA.1 infected individuals. We did not observe substantial differences in viral properties in cell culture relative to XBB.1.5. Both BA.2.86 and XBB.1.5 produced infection foci of similar size, had similar cytopathic effect (both lower than ancestral SARS-CoV-2), and had similar replication dynamics. We also investigated the relationship of BA.2.86 to BA.2 sequences and found that the closest were BA.2 samples from Southern Africa circulating in early 2022. These observations suggest that BA.2.86 is more closely related to sequences from Southern Africa than other regions and so may have evolved there, and that evolution led to escape from neutralizing antibodies similar in scale to recently circulating strains of SARS-CoV-2.


Subject(s)
Breakthrough Pain
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-322470.v1

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a public health emergency of international concern1. People living with HIV (PLWH) are at increased risk for adverse COVID-19 outcomes compared with HIV-negative individuals2-5, and are a high-risk group for COVID-19 prevention4. The ChAdOx1 nCoV-19 (AZD1222) vaccine has demonstrated safety and efficacy against COVID-19 in clinical trials6-8. To date, there are no reports on the safety and immunogenicity of this, or any COVID-19 vaccine, in PLWH, and reports on the immunogenicity of COVID-19 vaccines in Africa are limited9. Here, we show comparable safety and immunogenicity of two doses of ChAdOx1 nCoV-19 between PLWH and HIV-negative individuals in South Africa. Furthermore, in PLWH previously exposed to SARS-CoV-2, antibody responses increased substantially from baseline following a priming dose, with modest increases after a booster dose. Full-length spike and receptor-binding domain IgG geometric mean concentrations after a single dose of ChAdOx1 nCoV-19 in PLWH previously exposed to SARS-CoV-2 were 6.49–6.84-fold higher than after two doses in those who were SARS-CoV-2 naïve at enrollment. Neutralizing antibody responses were consistent with the antibody-binding responses. This is the first report of a COVID-19 vaccine specific to PLWH, and specific to Africa, and demonstrates favorable safety and immunogenicity of ChAdOx1 nCoV-19 in PLWH.


Subject(s)
Coronavirus Infections , HIV Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL